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Abstract

Binaural audio provides human listeners with an immersive spatial sound experience, but most
existing videos lack binaural audio recordings. We propose an audio spatialization method that
draws on visual information in videos to convert their monaural (single-channel) audio to bin-
aural audio. Whereas existing approaches leverage visual features extracted directly from video
frames, our approach explicitly disentangles the geometric cues present in the visual stream to
guide the learning process. In particular, we develop a multi-task framework that learns geometry-
aware features for binaural audio generation by accounting for the underlying room impulse
response, the visual stream’s coherence with the sound source(s) positions, and the consistency
in geometry of the sounding objects over time. Furthermore, we introduce two new large video
datasets: one with realistic binaural audio simulated for real-world scanned environments, and the
other with pseudo-binaural audio obtained from ambisonic sounds in YouTube 360° videos. On
three datasets, we demonstrate the efficacy of our method, which achieves state-of-the-art results.

Keywords: audio spatialization, binaural audio generation, video, audio-visual, multi-task learning

1 Introduction

Both sight and sound are key drivers of the human
perceptual experience, and both convey essential
spatial information. For example, a car driving
past us is audible—and spatially trackable—even
before it crosses our field of view; a bird singing
high in the trees helps us spot it with binoculars;
a chamber music quartet performance sounds spa-
tially rich, with the instruments’ layout on stage
affecting our listening experience.

Spatial hearing is possible thanks to the binau-
ral audio received by our two ears. The Interaural

Level Difference (ILD) and the Interaural Time
Difference (ITD) between the sounds reaching
each ear, as well as the shape of the outer ears
themselves, all provide spatial effects (Rayleigh,
1875). Meanwhile, the reflections and reverbera-
tions of sound in the environment are a function
of the room acoustics—the geometry of the room,
its major surfaces, and their materials. For exam-
ple, we perceive the same audio differently in a
long corridor versus a large room, or a room with
heavy carpet versus a smooth marble floor.
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Fig. 1: To generate accurate binaural audio from monaural audio, the visuals provide significant cues
that can be learnt jointly with audio prediction. Our approach learns to extract spatial information (e.g.,
the guitar player is on the left), geometric consistency of the position of the sound sources over time, and
cues from the inferred binaural impulse response from the surrounding room.

Videos or other media with binaural audio
imitate that rich audio experience for a user, mak-
ing the media feel more real and immersive. This
immersion is important for virtual reality and aug-
mented reality applications, where the user should
feel transported to another place and perceive it as
such. However, collecting binaural audio data is a
challenge. Presently, spatial audio is collected with
an array of microphones or specialized dummy
rig that imitates the human ears and head. The
collection process is therefore less accessible and
more costly compared to standard single-channel
monaural audio captured with ease from today’s
ubiquitous mobile devices.

Recent work explores how monaural audio can
be upgraded to binaural audio by leveraging the
visual stream in videos (Gao & Grauman, 2019a;
Morgado et al., 2018; H. Zhou et al., 2020). The
premise is that the visual context provides hints
for how to spatialize the sound due to the visi-
ble sounding objects and room geometry. While
inspiring, existing models are nonetheless lim-
ited to extracting generic visual cues that only
implicitly infer spatial characteristics.

Our idea is to explicitly model the spatial
phenomena in video that influence the associated
binaural sound. Going beyond generic visual fea-
tures, our approach guides binauralization with
those geometric cues from the object and environ-
ment that dictate how a listener receives the sound
in the real world. In particular, we introduce a
multi-task learning framework that accounts for
three key factors (Fig. 1). First, we require the
visual features to be predictive of the room impulse
response (RIR), which is the transfer function
between the sound sources, 3D environment, and
camera/microphone position. Second, we require

the visual features to be spatially coherent with
the sound, i.e., they can understand the difference
when audio is aligned with the visuals and when
it is not. Third, we enforce the geometric consis-
tency of objects over time in the video. Whereas
existing methods treat audio and visual frame
pairs as independent samples, our approach rep-
resents the spatio-temporal smoothness of objects
in video, which generally do not have dramatic
instantaneous changes in their layout.

The main contributions of this work are as
follows. Firstly, we propose a novel multi-task
approach to convert a video’s monaural sound to
binaural sound by learning audio-visual represen-
tations that leverage geometric characteristics of
the environment and the spatial and temporal
cues from videos. Second, to facilitate binauraliza-
tion research, we create two new datasets: 1) Sim-
Binaural, a large-scale dataset of simulated videos
with binaural sound in photo-realistic 3D indoor
scene environments, and 2) YouTube-Binaural, a
video dataset of pseudo-binaural audio obtained
by utilizing the information provided by ambisonic
sounds in an existing collection of YouTube 360°
videos (Morgado et al., 2018). Both datasets pro-
mote deeper experimentation for this problem,
facilitating both learning and quantitative evalu-
ation, while the new simulated dataset allows us
to explore the impact of particular parameters in
a controlled manner and support learning in real
videos.

We show the efficacy of our method via
extensive experiments in generating realistic bin-
aural audio, achieving state-of-the-art results.
We also show that simulated audio data can
further improve learning and performance in
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real videos. Supplementary video with exam-
ples of the datasets and results is available
at: https://vision.cs.utexas.edu/projects/visually
-guided-multitask-spatial.

2 Related Work

Visually-Guided Audio Spatialization

Recent work uses video frames to provide a form
of self-supervision to implicitly infer the relative
positions of sound-making objects. They formu-
late the problem as an upmixing task from mono
to binaural using the visual information. Mor-
gado et al. (2018) use 360 videos from YouTube
to predict first order ambisonic sound useful
for 360 viewing, while Lu et al. (2019) use a
self-supervised audio spatialization network using
visual frames and optical flow. Lu et al. (2019) use
correspondence to learn audio synthesizer ratio
masks, which does not necessitate understand-
ing of sound making objects. In contrast, we
enforce understanding of the sound location via
spatial coherence in the visual features. For speech
synthesis, using the ground truth position and ori-
entation of the source and receiver instead of a
video is also explored (Richard et al., 2021).

More closely related to our problem, the
2.5D visual sound approach of Gao and Grau-
man (2019a) generates binaural audio from video.
Building on those ideas, H. Zhou et al. (2020)
propose an associative pyramid network (APNet)
architecture to fuse the modalities and jointly
train on audio spatialization and source separa-
tion task. Xu et al. (2021) propose to generate
binaural audio for training from mono audio by
using spherical harmonics. In contrast to these
methods, we explore a novel framework for learn-
ing geometric representations, and we introduce a
large-scale photo-realistic simulated video dataset
with acoustically accurate binaural information
along with an in-the-wild video dataset augmented
with pseudo-binaural sound (both of which will
be shared publicly). We outperform the existing
methods and show that the new datasets can be
used to augment performance.

Audio and 3D Spaces

Recent work exploits the complementary nature
of audio and the characteristics of the environ-
ment in which it is heard or recorded. Prior

methods estimate the acoustic properties of mate-
rials (Schissler et al., 2017), estimate reverbera-
tion time and equalization of the room using an
actual 3D model of a room (Tang et al., 2020),
and learn audio-visual correspondence from video
(C. Chen et al., 2022; Yang et al., 2020). C. Chen,
Jain, et al. (2020) introduce the SoundSpaces
audio platform to perform audio-visual naviga-
tion in scanned 3D environments, using binaural
audio to guide policy learning. Ongoing work
continues to explore audio-visual navigation mod-
els for embodied agents (C. Chen et al., 2021;
C. Chen, Majumder, et al., 2020; Dean et al.,
2020; Gan, Zhang, et al., 2020; Majumder et al.,
2021; Majumder & Grauman, 2022). Other work
predicts depth maps (Christensen et al., 2020) or
floorplans (Purushwalkam et al., 2021) using spa-
tial audio or learns representations via interaction
using echoes recorded in indoor 3D simulated envi-
ronments (Gao, Chen, et al., 2020). In contrast to
all of the above, we are interested in a different
problem of generating accurate spatial binaural
sound from videos. We do not use it for naviga-
tion nor to explicitly estimate information about
the environment. Rather, the output of our model
is spatial sound to provide a human listener with
an immersive audio-visual experience.

Audio-Visual Learning

Audio-visual learning has a long history, and has
enjoyed a resurgence in the vision community in
recent years.

Cross-modal learning is explored to under-
stand the natural synchronisation between visuals
and the audio (Arandjelovic & Zisserman, 2017;
Aytar et al., 2016; Owens, Wu, et al., 2016).
Audio-visual data is leveraged for audio-visual
speech recognition (Chung et al., 2017; Hu et
al., 2016; Yu et al., 2020; H. Zhou et al., 2019),
audio-visual event classification and localization
(C. Chen et al., 2022; Gao, Oh, et al., 2020; Tian
et al., 2020, 2018; Wu et al., 2019) sound source
localization (Arandjelović & Zisserman, 2018; Hu
et al., 2020; Rouditchenko et al., 2019; Senocak
et al., 2018; Tian et al., 2018), self-supervised
representation learning (Gao, Chen, et al., 2020;
Korbar et al., 2018; Morgado et al., 2020; Owens
& Efros, 2018; Owens, Wu, et al., 2016), gener-
ating sounds from video (P. Chen et al., 2020;
Gan, Huang, Chen, et al., 2020; Owens, Isola, et

https://vision.cs.utexas.edu/projects/visually-guided-multitask-spatial
https://vision.cs.utexas.edu/projects/visually-guided-multitask-spatial
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al., 2016; Y. Zhou et al., 2018), and audio-visual
source separation for speech (Afouras et al.,
2019; Ephrat et al., 2018; Gabbay et al., 2018;
Gao & Grauman, 2021; Owens & Efros, 2018),
music (Gan, Huang, Zhao, et al., 2020; Gao &
Grauman, 2019b; Xu et al., 2019; Zhao et al.,
2019, 2018), and objects (Gao et al., 2018; Gao &
Grauman, 2019b; Tzinis et al., 2021). In contrast
to all these methods, we perform a different task:
to produce binaural two-channel audio from a
monaural audio clip using a video’s visual stream.

Finally, this manuscript builds upon our previous
work published in BMVC 2021 (Garg et al., 2021).
Specifically, we make the following additional con-
tributions in this work: (i) we propose a new
in-the-wild binaural videos dataset and a method
to obtain such videos from existing 360° videos
(Sec 4.3), (ii) we evaluate our proposed method
on this new dataset, and examine its utility for
existing data (Sec. 5), (iii) we perform an abla-
tion analysis to study the impact of the different
multi-task components (Sec 5), (iv) we perform
qualitative and quantitative analysis of the RIR
prediction task (Sec 5), (v) we provide additional
details about the SimBinaural dataset generation
process and visualize various statistics of the data
(Sec. 4.2).

3 Approach

Our goal is to generate binaural audio from
videos with monaural audio. In this section, we
first formally describe the problem (Section 3.1).
Then we introduce our proposed multi-task set-
ting (Section 3.2). Next we describe the training
and inference method (Section 3.3), and finally
we describe the proposed SimBinaural dataset
(Section 4.2).

3.1 Problem Formulation

Our objective is to map the monaural sound from
a given video to spatial binaural audio. The input
video may have one or more sound sources, and
neither their positions in the 3D scene nor their
positions in the 2D video frame are given.

For a video V with frames {v1...vT } and
monaural audio atM , we aim to predict a two chan-
nel binaural audio output {atL, atR}. Whereas a

single-channel audio atM lacks spatial characteris-
tics, two-channel binaural audio {atL, atR} conveys
two distinct waveforms to the left and right ears
separately and hence provides spatial effects to
the listener. By coupling the monaural audio with
the visual stream, we aim to leverage the spa-
tial cues from the pixels to infer how to spatialize
the sound. We first transfer the input audio wave-
forms into the time-frequency domain using the
Short-Time Fourier Transformation (STFT). We
aim to predict the binaural audio spectrograms
{At

L,At
R} from the input mono spectrogram At

M ,
where At

X = STFT(atX), conditioned on visual
features vtf from the video frames at time t.

3.2 Geometry-Aware Multi-Task
Binauralization Network

Our approach has four main components: the
backbone for converting mono audio to binaural by
injecting the visual information, the spatial coher-
ence module that learns the relative alignment of
the spatial sound and frame, an RIR prediction
module that requires the room impulse response
to be predictable from the video frames, and
the geometric consistency module that enforces
consistency of objects over time.

Backbone Loss

First, we define the backbone loss within our
multi-task framework (Fig. 2, bottom). This back-
bone network is used to transform the input
monaural spectrogram At

M to binaural ones. Dur-
ing training, the mono audio is obtained by aver-
aging the two channels atM = (atL + atR)/2 and
hence the spatial information is lost. Rather than
directly predict the two channels of binaural out-
put, we predict the difference of the two channels,
following Gao and Grauman (2019a). This better
captures the subtle distinction of the channels and
avoids collapse to the easy case of predicting the
same output for both channels. We predict a com-
plex maskM t

D, which, multiplied with the original
audio spectrogram At

M , gives the predicted dif-
ference spectrogram At

D(pred) = M t
D · At

M . The
true difference spectrogram of the training input
At

D is the STFT of atL − atR. We minimize the
distance between these two spectrograms: ∥At

D −
At

D(pred)∥
2
2. We also predict the two channels via

two complex masks M t
L and M t

R, one for each
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Fig. 2: Proposed network. The network takes the visual frames and monaural audio as input. The ResNet-
18 visual features vtf are trained in a multi-task setting. The features vtf are used to directly predict the
RIR via a decoder (top right). Audio features from binaural audio, which might have flipped channels,
are combined with vtf and used to train a spatial coherence classifier G (middle right). Two temporally

adjacent frames are also used to ensure geometric consistency (top center). The features vtf are jointly
trained with the backbone network (bottom) to predict the final binaural audio output.

channel, to obtain the predicted channel spectro-
grams At

L(pred) and At
R(pred) like above. This gives

us the overall backbone objective:

LB = ∥At
D −At

D(pred)∥
2
2

+
{
∥At

L −At
L(pred)∥

2
2 + ∥At

R −At
R(pred)∥

2
2

}
.

(1)

Spatial Coherence

We encourage the visual features to have geomet-
ric understanding of the relative positions of the
sound source and receiver via an audio-visual fea-
ture alignment prediction term. This loss requires
the predicted audio to correctly capture which
channel is left and right with respect to the visual
information. This is crucial to achieve the proper
spatial effect while watching videos, as the audio
needs to match the observed visuals’ layout.

In particular, we incorporate a classifier to
identify whether the visual input is aligned with
the audio. The classifier G combines the binaural
audio ALR = {At

L,At
R} and the visual features

vtf to classify if the audio and visuals agree. In
this way, the visual features are forced to reason
about the relative positions of the sound sources
and learn to find the cues in the visual frames
which dictate the direction of sound heard. Dur-
ing training, the original ground truth samples
are aligned. We create misaligned samples by flip-
ping the two channels in the ground truth audio
to get ALR = {At

R,At
L}. We calculate the binary

cross entropy (BCE) loss for the classifier’s pre-
diction of whether the audio is flipped or not,
c = G(ALR, v

t
f ), and the indicator ĉ denoting if

the audio is flipped, yielding the spatial coherence
loss:

LG = BCE(G(ALR, v
t
f ), ĉ). (2)

Room Impulse Response and
Reverberation Time Prediction

The third component of our multi-task model
trains the visual features to be predictive of
the room impulse response (RIR). An impulse
response gives a concise acoustic description of the
environment, consisting of the initial direct sound,
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the early reflections from the surfaces of the room,
and a reverberant tail from the subsequent higher
order reflections between the source and receiver.
The visual frames convey information like the lay-
out of the room and the sound source with respect
to the receiver, which in part form the basis of
the RIR. Since we want our audio-visual feature
to be a latent representation of the geometry of
the room and the source-receiver position pair, we
introduce an auxiliary task to predict the room IR
directly from the visual frames via a generator on
the visual features.

Furthermore, we require the features to be
predictive of the reverberation time RT60 metric,
which is the time it takes the energy of the impulse
to decay 60dB, and can be calculated from the
energy decay curve of the IR (Schroeder, 1965).
The RT60 is commonly used to characterize the
sound properties of a room; we employ it as a low-
dimensional target here to guide feature learning
alongside the high-dimensional RIR spectrogram
prediction.

We convert the ground truth binaural impulse
response signal {rL, rR} to the frequency domain
using the STFT and obtain magnitude spectro-
grams X for each channel. The IR prediction
network consists of a generator which performs
upconvolutions on the visual features vtf to obtain

a predicted magnitude spectrogram X t
(pred). We

minimize the euclidean distance between the pre-
dicted RIR X t

(pred), and the ground truth X t
gt.

Additionally, we obtain the RIR waveform from
the predicted spectrogram X t

(pred) via the Griffin-

Lim algorithm (Griffin & Lim, 1984; Perraudin
et al., 2013) and compute the RT60(pred). We
minimize the L1 distance between the predicted
RT60(pred) and the ground truth RT60(gt). Thus,
the overall RIR prediction loss is:

LP = ∥X t
(pred) −X t

gt∥22 + |RT60(pred) −RT60(gt)|.
(3)

Geometric Consistency

Since the videos are continuous samples over time
rather than individual frames, our fourth and final
loss regularizes the visual features by requiring
them to have spatio-temporal geometric consis-
tency. The position of the source(s) of sound and
the position of the camera—as well as the physi-
cal environment where the video is recorded—do
not typically change instantaneously in videos.

Therefore, there is a natural coherence between
the sound in a video observed at two points
that are temporally close. Since visual features
are used to condition our binaural prediction, we
encourage our visual features to learn a latent rep-
resentation that is coherent across short intervals
of time. Specifically, the visual features vtf and

vt±δ
f should be relatively similar to each other to
produce audio with fairly similar spatial effects.
Specifically, the geometric consistency loss is:

LS = max(∥vtf − vt±δ
f ∥ − α, 0), (4)

where α is the margin allowed between two visual
features. We select a random frame ±1 second
from t, so −1 ≤ δ ≤ 1. This ensures that simi-
lar placements of the camera with respect to the
audio source should be represented with similar
features, while the margin allows room for dis-
similarity for the changes due to time. Since the
underlying visual features are regularized to be
similar, the predicted audio conditioned on these
visual features is also encouraged to be temporally
consistent.

3.3 Training and Inference

During training, the mono audio is obtained by
taking the mean of the two channels of the ground
truth audio atm = (atL+atR)/2. The visual features
vtf are reduced in dimension, tiled, and concate-
nated with the output of the audio encoder to fuse
the information from the audio and visual streams.
The overall multi-task loss is a combination of the
losses (Equations 1-4) described earlier:

L = λBLB + λSLS + λGLG + λPLP , (5)

where λB , λS , λG and λP are the scalar weights
used to determine the effect of each loss during
training, set using validation data.

To generate audio at test time, we only require
the mono audio and visual frames. The predicted
spectrograms are used to obtain the predicted
difference signal atD(pred) and two-channel audio

{atL, atR} via an inverse Short-Time Fourier Trans-
formation (ISTFT) operation.
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4 Video Datasets with
Binaural Audio

In this section, we describe the three video
datasets with binaural audio that we use for
evaluation of our method. We first describe FAIR-
Play (Gao & Grauman, 2019a) (Sec. 4.1), an
existing video dataset with binaural audio col-
lected in a music room. Then, we introduce
two new datasets to facilitate both learning and
quantitative evaluation: SimBinaural (Sec. 4.2), a
large-scale dataset of simulated videos with bin-
aural sound in photo-realistic 3D indoor scene
environments, and YouTube-Binaural (Sec. 4.3),
a video dataset of pseudo-binaural audio obtained
by utilizing the information provided by ambisonic
sounds in YouTube 360° videos.

4.1 FAIR-Play

The FAIR-Play dataset collected by (Gao & Grau-
man, 2019a) is a large public video dataset with
binaural audio, and is widely used for the task
of visually-guided audio spatialization for video.
It was recorded using a binaural microphone rig,
composed of an ear shaped housing mounted on
top of a video camera. The videos were captured
in a large music room, with various combina-
tions of instruments and people in different spatial
contexts within the room. The videos consist of
recordings of people playing instruments like cello,
guitar, drum, piano etc. and are composed of solo,
duet, and multi-player performances. The dataset
totals 5.2 hours of video, which are broken into
1,871 10-second clips.

4.2 SimBinaural Dataset

We also experiment with video from scanned
environments with high quality simulated audio.
To facilitate large-scale experimentation—and to
augment learning from real videos—we create
a new dataset called SimBinaural of simulated
videos in photo-realistic 3D indoor scene envi-
ronments.1 The generated videos, totaling over
100 hours, resemble real-world audio recordings
and are sampled from 1,020 rooms in 80 distinct
environments; each environment is a multi-room

1The SimBinaural dataset was constructed at, and will be
released by, The University of Texas at Austin.

home. Using the publicly available SoundSpaces2

audio simulations (C. Chen, Jain, et al., 2020)
together with the Habitat simulator (Savva et
al., 2019), we create realistic videos with binaural
sounds for publicly available 3D environments in
Matterport3D (Chang et al., 2017) (Fig. 3). Our
resulting SimBinaural dataset is much larger and
more diverse than the FAIR-Play dataset (Gao &
Grauman, 2019a) which contains real videos but
is limited to 5 hours of recordings in one room
(Table 1).

To construct the dataset, we insert diverse 3D
models from poly.google.com of various instru-
ments like the guitar, violin, flute etc. and other
sound-making objects like phones and clocks into
the scene. Each object has multiple models of
that type for diversity, so we do not associate a
sound with a particular 3D model. We have a total
of 35 objects from 11 classes. To generate real-
istic binaural sound in the environment as if it
is coming from the source location and heard at
the camera position, we convolve the appropriate
SoundSpaces (C. Chen, Jain, et al., 2020) room
impulse response (RIR) with an anechoic audio
waveform (e.g., a guitar playing for an inserted
guitar 3D object). We use sounds recorded in ane-
choic environments as input to the SoundSpaces
RIRs, so that there are no existing reverberations
to affect the data. The sounds are obtained from
Freesound (Font et al., 2013) and OpenAIR data
(Murphy & Shelley, 2010) to form a set of 127 dif-
ferent sound clips spanning the 11 distinct object
categories.

Using this setup, we capture videos with sim-
ulated binaural sound just like in the real world
using an agent equipped with a virtual camera
and binaural microphone. The virtual camera and
attached microphones are moved along trajecto-
ries such that the object remains in view, leading
to diversity in views of the object and locations
within each video clip (see Fig. 4). While generat-
ing a video, we use a fixed sound source position
and the agent traverses a random path. Since the
camera moves and rotates throughout the video,

2SoundSpaces (C. Chen, Jain, et al., 2020) provides room
impulse responses at a spatial resolution of 1 meter. These
state-of-the-art RIRs capture how sound from each source
propagates and interacts with the surrounding geometry and
materials, modeling all the major real-world features of the
RIR: direct sounds, early specular/diffuse reflections, reverber-
ations, binaural spatialization, and frequency dependent effects
from materials and air absorption.
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Fig. 3: Example frames from the FAIR-Play (top), SimBinaural (middle), and YouTube-Binaural (bot-
tom) datasets. See supplementary video for audio-visual examples.

Fig. 4: The video generation process for SimBin-
aural. An object and corresponding audio is placed
in the scene. A virtual camera traverses a trajec-
tory in the room such that the object is seen from
different distances and viewpoints.

the view of the object changes resulting in various
orientations and positions of the object within a
video frame, for each video. We ensure that the
object is in view of the camera using ray tracing,
and the source positions are densely sampled from
the 3D environments. The camera moves to a new
position every 5 seconds and has a small trans-
lational motion during the five-second interval.
The videos are generated at 5 frames per second,
the average length of the videos in the dataset is
19.2s and the median length is 15s. Please see the
supplementary video for examples.

The resulting data has a lot of inter-video and
intra-video diversity. The objects are at various
distances from the camera throughout the videos

(Fig. 5a) and the distance changes within a video.
The rooms in which the videos are captured are of
very different sizes (Fig. 5b) and hence have dif-
ferent acoustic properties. The position of sources
of sound with respect to the receiver also varies
across the videos; Fig. 5c shows the distribution
of the angle the object makes from the center of
the frame.

4.3 YouTube-Binaural Dataset

To experiment with another source of real-
world in-the-wild data from multiple scenes, we
next augment an existing dataset of YouTube
videos (Morgado et al., 2018). The dataset con-
tains 360° videos and ambisonic omnidirectional
audio. We augment it in two ways: 1) we trans-
form the ambisonic audio into (pseudo)-binaural
audio, and 2) we transform each 360° clip into a
normal field-of-view clip in which the camera faces
the prominent sound source.

Previous work using 360° video for the bin-
auralization task uses the full equirectangular
frame and converts the ambisonic audio to bin-
aural directly (Gao & Grauman, 2019a; H. Zhou
et al., 2020). However, the equirectangular frame
offers a distorted view of the whole space and
does not focus on sound sources. Additionally, the
ground truth binaural obtained from ambisonics
does not take into account the location of the
sound sources, implicitly assuming that the visual
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(a) Distance of the sound (m) (b) Size of the room (m2) (c) Angle from the center (degrees)

Fig. 5: Statistics of the distance between the sound source and the receiver, the size of the room, and
the angle of the object from the center of the frame for the SimBinaural dataset. This illustrates the
diversity in the data in different aspects, both within a video, and across the dataset.

Fig. 6: The video processing pipeline to create the YouTube-Binaural dataset. We use a 360° video with
ambisonic audio (from the existing YT-Clean dataset (Morgado et al., 2020)) to obtain a normal field-
of-video video with binaural audio.

object(s) causing the sound are centered in the
equirectangular projection of the frame.

Our insight is that the direction from which
the primary sounds reach the 360° camera is also
the direction where the visual stream is typically
most relevant. For example, in a 360° video where
a boat passes by, the direction of the noisy engine
agrees with where one sees the visual evidence of
the boat. We use this property to compose a nor-
mal field-of-view (perspective projection) video
dataset relevant for our binauralization task, as
follows.

We first use the actual ambisonic audio to cal-
culate the audio intensities at densely sampled

points Pi = (θi, ϕi) in the full 360° view (Fig. 6).
We use these points to obtain a spherical heatmap
of the audio energies. From this audio energy map,
we determine a rectangular region of size 25°×25°,
which has the highest average sound energy across
the map. Since this is a 360° video, we should be
able to see most sound sources somewhere in the
frame if they are in view of the camera; the region
we select represents the direction with maximum
intensity and hence likelihood of a sound source of
interest.3

3This is the typical case. However, there can be instances
where a sound source is not visualized in the video at all; for
example, if music is playing from a small radio and the radio is
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Denote this direction by the angles (ϕM , θM )
from the center of the frame in the spherical coor-
dinates. We then crop the equirectangular video
in this direction (ϕM , θM ) to a normal field-of-
view so that the resulting video will have the
sound making region in view. To preserve the
integrity of the scene geometry, we use a perspec-
tive projection of the cropped video onto a planar
region tangent to the sphere, as opposed to sim-
ply cropping from the equirectangular projection
(see Fig. 7 and 6).

To obtain the accompanying binaural audio,
we convert the four-channel ambisonic audio to
binaural audio such that the listener is facing
the direction (ϕM , θM ), which provides a realistic
sound when paired with the normal field-of-view
video. The ambisonic signal is convolved with a
head-related transfer function (HRTF) along the
time dimension and summed to produce the audio
for each ear (Zaunschirm et al., 2018). Since the
HRTF has to be truncated to the spherical har-
monic order of the ambisonics (first order in our
case), it results in some approximations in the
generated binaural audio, as compared to that
captured by a professional binaural microphone,
as in FAIR-Play (Gao & Grauman, 2019a).

We stress that no matter what viewing angle is
selected using the audio intensity heatmap above,
the binaural audio we compute to pair with it
is appropriate. That is, even if the viewpoint
selection heuristic does not display the sound-
ing object, it is still a relevant training/testing
instance because the accompanying sound is spa-
tialized for that same viewpoint.

For the 360° videos, we use the YT-
Clean (Morgado et al., 2018) dataset, which
contains in-the-wild YouTube videos collected
by querying for terms related to spatial audio
and consists of videos which have four-channel
ambisonic audio. Most have a small number of
super-imposed sources like people talking in a
room, a person playing an instrument etc. which
can be localized in the image. The resulting
YouTube-Binaural dataset has 426 videos, total-
ing over 27 hours of normal field-of-view video and
the corresponding binaural audio.

not visible to the camera. While the binaural data generated
in such cases is still correct, it might be harder for any model
(including ours) to learn from such samples. Empirically, the
number of such clips forms a very small portion of the data.

Fig. 7: Examples of cropping the equirectangular
frame. Direct cropping can lead to significant dis-
tortions. In contrast, a correct crop first projects
the image to a plane tangent to the sphere cen-
tered at the target direction.

Table 1 offers a comparison of all three
datasets. FAIR-Play (Gao & Grauman, 2019a)
consists of real video, with audio recorded with
a binaural mic rig. This dataset has over 5
hours of such video, but is limited to just one
room and musical instruments. SimBinaural on
the other hand is a large-scale dataset with over
100 hours of binaural audio and video in over
1,000 different rooms, and it includes RIR data
as well. However, it is generated via a simula-
tor and hence lacks the realism of FAIR-Play.
YouTube-Binaural contains real video and is much
larger (27 hours of video) and more diverse
than FAIR-Play as it is composed of in-the-wild
video in various scenes. However, unlike the other
two datasets, the audio in YouTube-Binaural is
derived from ambisonics, as opposed to directly
sensed binaural sound. The datasets are available
on the project page: https://vision.cs.utexas.edu/
projects/visually-guided-multitask-spatial.

5 Experiments

We validate our approach on the FAIR-Play (Gao
& Grauman, 2019a) (the existing real video bench-
mark), our new SimBinaural dataset, and the
augmented YouTube-Binaural data. We compare
to the following baselines:

• Flipped-Visual: We flip the visual frame hor-
izontally to provide incorrect visual informa-
tion while testing. Incorrect visual information
ought to be a disadvantage if the visual frame
is significant for our results. The other settings
are the same as our method.

https://vision.cs.utexas.edu/projects/visually-guided-multitask-spatial
https://vision.cs.utexas.edu/projects/visually-guided-multitask-spatial
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Dataset #Videos Length (hrs) #Rooms RIR
FAIR-Play (Gao & Grauman, 2019a) 1,871 5.2 1 No

SimBinaural 21,737 116.1 1,020 Yes
YouTube-Binaural 426 27.7 n/a No

Table 1: A comparison of the data in FAIR-Play and the two additional datasets presented in this work.

• Audio Only: We provide only monaural audio
as input, with no visual frames, to verify if the
visual information is essential to learning.

• Mono-Mono: Both channels have the same
input monaural audio repeated as the two-
channel output to verify if we are actually
distinguishing between the channels.

• Mono2Binaural (Gao & Grauman, 2019a): A
state-of-the-art 2.5D visual sound model for this
task. We use the authors’ code to evaluate in
the settings as ours.

• APNet (H. Zhou et al., 2020): A state-of-the-
art model that handles both binauralization and
audio source separation. We use the APNet
network from their method and train only on
binaural data (rather than stereo audio). We use
the authors’ code.

• PseudoBinaural (Xu et al., 2021): A state-
of-the-art model that uses additional data to
augment training. We use the authors’ public
pre-trained model.

We evaluate two standard metrics, follow-
ing Gao and Grauman (2019a); Morgado et al.
(2018); H. Zhou et al. (2020):

• STFT Distance: The euclidean distance
between the predicted and ground truth STFT
spectrograms, which directly measures how
accurate is our produced spectrogram

DSTFT = ∥At
L−At

L(pred)∥2+∥At
R−At

R(pred)∥2.

• Envelope Distance (ENV): Perceptual simi-
larity cannot be captured well by direct compar-
ison of raw waveforms. The envelope distance
metric measures the euclidean distance between
the envelopes Et

L of the predicted raw audio
signal atL and the ground truth and is defined as

DENV = ∥Et
L −Et

L(pred)∥2 + ∥Et
R −Et

R(pred)∥2.

Implementation details

All networks are written in PyTorch (Paszke et
al., 2019). The backbone network is based upon
the networks used for 2.5D visual sound (Gao &
Grauman, 2019a) and APNet (H. Zhou et al.,
2020). The visual network is a ResNet-18 (He et
al., 2016) with the pooling and fully connected
layers removed. The audio network consists of a
U-Net (Ronneberger et al., 2015) type architec-
ture. The U-Net consists of 5 convolution layers
for downsampling and 5 upconvolution layers in
the upsampling network and include skip connec-
tions. The encoder for spatial coherence follows
the same architecture as the U-Net encoder for
the audio feature extraction. The classifier com-
bines the audio and visual features and uses a fully
connected layer for prediction. The generator net-
work is adapted from GANSynth (Engel et al.,
2019), modified to fit the required dimensions of
the audio spectrogram.

To preprocess all datasets, we follow the stan-
dard steps from (Gao & Grauman, 2019a). We
resampled all the audio to 16kHz and computed
the STFT using a FFT size of 512, window size
of 400, and hop length of 160. For training the
backbone, we use 0.63s clips of the audio and
the corresponding frame. Frames are extracted at
10fps. The visual frames are randomly cropped
to 448 × 224. For testing, we use a sliding win-
dow of 0.1s to compute the binaural audio for all
methods.

For the YouTube-Binaural dataset, the sound
energy intensity maps are calculated for the aver-
age intensity every one second. Thus, the maxi-
mum sound intensity region directions are com-
puted and a new crop of the video is created in
that direction for every second. The videos are
cropped at a 90° field-of-view. Similarly, a cor-
responding binaural audio is computed from the
ambisonics in the direction of max energy for that
one-second period. The videos are created at 8
frames per second.
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FAIR-Play SimBinaural YouTube-Binaural

Scene-Split Position-Split
STFT ENV STFT ENV STFT ENV STFT ENV

Mono-Mono 1.215 0.157 1.356 0.163 1.348 0.168 4.715 0.261
Audio-Only 1.102 0.145 0.973 0.135 0.932 0.130 3.129 0.213

Flipped-Visual 1.134 0.152 1.082 0.142 1.075 0.141 3.298 0.214
Mono2Binaural (Gao & Grauman, 2019a) 0.927 0.142 0.874 0.129 0.805 0.124 2.892 0.208

APNet (H. Zhou et al., 2020) 0.904 0.138 0.857 0.127 0.773 0.122 2.733 0.204

Backbone+IR Pred n/a n/a 0.801 0.124 0.713 0.117 n/a n/a
Backbone+Spatial 0.873 0.134 0.837 0.126 0.756 0.120 2.645 0.201
Backbone+Geom 0.874 0.135 0.828 0.125 0.731 0.118 2.580 0.196
Our Full Model 0.869 0.134 0.795 0.123 0.691 0.116 2.544 0.196

Table 2: Binaural audio prediction errors on all three datasets. For both metrics, lower is better.

We use the Adam optimizer (Kingma & Ba,
2015) and a batch size of 64. The initial learn-
ing rates are 0.001 for the audio and the fusion
networks, and 0.0001 for all the other networks.
We train the FAIR-Play dataset for 1000 epochs,
the SimBinaural dataset for 100 epochs and the
YouTube-Binaural dataset for 7000 epochs. We
train the RIR prediction separately and use the
weights for initialization while training jointly.
The δ for choice of frame is set to 1s and the λ’s
used are set based on validation set performance
to λB = 10, λS = 1, λG = 0.01, λP = 1.

SimBinaural results

We evaluate on two data splits: 1) Scene-Split ,
where the train and test set have disjoint scenes
fromMatterport3D (Chang et al., 2017) and hence
the room of the videos at test time has not been
seen before; and 2) Position-Split , where the
splits may share the same Matterport3D scene/-
room but the exact configuration of the source
object and receiver position is not seen before.

Table 2 (center) shows the results. The
table also ablates the parts of our model. Our
model outperforms all the baselines, including the
two state-of-the-art prior methods. In addition,
Table 2 confirms that Scene-Split is a funda-
mentally harder task. This is because we must
predict the sound, as well as other characteris-
tics like the IR, from visuals distinct from those
we have observed before. This forces the model to
generalize its encoding to generic visual proper-
ties (wall orientations, major furniture, etc.) that
have intra-class variations and geometry changes
compared to the training scenes.

Method STFT ENV
APNet (H. Zhou et al., 2020) 1.291 0.162

PseudoBinaural (Xu et al., 2021) 1.268 0.161
Ours 1.234 0.160

Ours+SimBinaural 1.175 0.154

Table 3: Results on FAIR-Play when additional
data is used for training.

The ablations shed light on the impact of each
of the proposed losses in our multi-task frame-
work. The full model uses all the losses as in Eqn 5.
This outperforms other methods significantly on
both splits. It also outperforms using each of the
losses individually, which demonstrates the losses
can combine to jointly learn better visual features
for generating spatial audio.

FAIR-Play results

Table 2 (left) shows the results on the real video
benchmark FAIR-Play using the standard split.
Here, we omit the IR prediction network for
our method, since FAIR-Play lacks ground truth
impulse responses (which we need for training).
The Backbone+Spatial and Backbone+Geom are
the same as above. Both variants of our method
outperform the state-of-the-art. Therefore, enforc-
ing the geometric and spatial constraints is benefi-
cial to the binaural audio generation task. We get
the best results when we combine both the losses
in our framework.

To further evaluate the utility of our SimBin-
aural dataset, we next jointly train with both
SimBinaural and FAIR-Play, then test on a chal-
lenging split of FAIR-Play in which the test scenes
are non overlapping, as proposed by Xu et al.
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Method STFT ENV
APNet (H. Zhou et al., 2020) 2.733 0.204

Ours 2.544 0.196
Ours+SimBinaural 2.491 0.194

Table 4: Results on YouTube-Binuaral trained
along with SimBinaural. We cannot compare
to PseudoBinaural (Xu et al., 2021) as their
data augmentation method and the available pre-
trained model focus on creating binaural audio for
music and thus are tailored to FAIR-Play.

(2021). We compare our method with Augment-
PseudoBinaural (Xu et al., 2021)4 which also uses
additional generated training data. Our method
with SimBinaural outperforms other methods
(Table 3). This is an important result, as it
demonstrates that SimBinaural can be leveraged
to improve performance on real video.

YouTube-Binaural results

Finally, we evaluate on our method on the
YouTube-Binaural data. Table 2 (right) shows the
results on this dataset. Like FAIR-Play, we omit
the IR prediction network due to lack of ground
truth impulse responses. The augmented binau-
ral data is used for both training and evaluation.
Using the additional proposed losses helps improve
the results, and our overall method outperforms
state-of-the-art methods, showcasing the efficacy
of learning visual features on in-the-wild videos as
well.

We also jointly train YouTube-Binaural with
SimBinaural, and test on the same YouTube-
Binaural clips. SimBinaural helps further improve
binauralization performance, again demonstrating
its utility for real video (Table 4).

User Studies

Next, we present two user studies to validate
whether the predicted binaural sound does indeed
provide an immersive and spatially accurate expe-
rience for human listeners. Twenty participants
with normal hearing were presented with 20 videos
from the test sets. They were asked to rate the
quality in two ways: 1) users were given only the

4The pre-trained model provided by PseudoBinaural (Xu et
al., 2021) is trained on a different split instead of the stan-
dard split from Gao and Grauman (2019a) and hence it is not
directly comparable in Table 2. We evaluate on the new split
in Table 3.

Fig. 8: User study results evaluating whether lis-
teners can tell the correct direction of the sounds
(left) and how often they find each model to better
match the ground truth (right). See the supple-
mentary video for examples.

audio and asked to choose from which direction
(left/right/center) they heard the audio; 2) given
a pair of audios and a reference frame, the users
were asked to choose which audio gives a binaural
experience closer to the provided ground truth. As
can be seen in Fig. 8, users preferred our method
both for the accuracy of the direction of sound
(left) and binaural audio quality (right).

Qualitative Visualization

Next we explore qualitatively what the features
have learned. Figure 9 shows the t-SNE projec-
tions (Van der Maaten & Hinton, 2008) of the
visual features from SimBinaural colored by the
RT60 of the audio clip. While the features from
our method (left) can infer the RT60 character-
istics, the ones from APNet (H. Zhou et al.,
2020) (center) are randomly distributed. Simulta-
neously, our features also accurately capture the
angle of the object from the center (right). Fig. 10
shows the activation maps of the visual network.
While APNet produces more diffuse maps, our
method localizes the object better within the
image. This indicates that the visual features in
our method are better at identifying the regions
which might be emitting sound to generate more
accurate binaural audio.

Ablation Study

Table 2 illustrates that adding each component
of our method individually to the visual fea-
tures helps improve the binaural audio quality
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Fig. 9: t-SNE of visual features colored by RT60 for our method (left) and APNet (H. Zhou et al., 2020)
(center); and colored by angle of the object from the center (right). Our method learns a representation
that better reflects the RT60 characteristics and captures the angle of the sound source.

Fig. 10: Qualitative visualization of the activation maps for the visual network for APNet (H. Zhou et
al., 2020) and ours. We can see that while the activation maps for APNet (H. Zhou et al., 2020) are
diffused and focusing on non-essential parts like objects in the background, our method focuses more on
the object/region producing the sound and its location.
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Scene-Split Position-Split
Backbone Spatial IR Pred. Geom. STFT ENV STFT ENV

✓ 0.857 0.127 0.773 0.122
✓ ✓ 0.837 0.126 0.756 0.120
✓ ✓ 0.821 0.125 0.725 0.119
✓ ✓ 0.836 0.126 0.728 0.119
✓ ✓ ✓ 0.804 0.123 0.702 0.117
✓ ✓ ✓ 0.817 0.125 0.724 0.118
✓ ✓ ✓ 0.809 0.124 0.707 0.117
✓ ✓ ✓ ✓ 0.795 0.123 0.691 0.116

Table 5: Ablations for the Scene-Split and Position-Split on SimBinaural with different combinations of
constraints.

performance across all datasets. Table 5 pro-
vides additional analysis to evaluate the combi-
nation of different components for our multi-task
framework for the SimBinaural for both Scene-
Split and Position-Split. It can be seen that
while adding each constraint helps improve per-
formance, when the different components are com-
bined, it improves the ability of the model to
incorporate multiple facets of the task illustrating
the efficacy of the multi-task formulation. Addi-
tionally, adding the IR prediction component to
generate an approximate impulse response from
the image frame without the audio has the most
impact on the models’ ability to accurately learn
the characteristics of the room and generate more
accurate binaural results. The tasks complement
each other to learn better visual features, leading
to better audio performance.

RIR Prediction Analysis

Finally, we analyze the RIR prediction component
of our multi-task learning framework to study the
effectiveness of the network for this task. Figure 11
shows qualitative examples of predictions from
the test set. It can be seen that we can get a
fairly accurate prediction of the IR, and the differ-
ence between the response in each channel is also
captured.

Quantitatively, we evaluate this by calculating
the estimation error for the RT60 metric for these
predicted IRs (Table 6). For the nearest neigh-
bor baseline, error is calculated with the IR of the
closest frame in the training set based on cosine
similarity of visual features. Our method has a
lower mean error and a smaller standard devia-
tion of errors compared to the nearest neighbor

Method Mean Err. Std.Dev Err.
Nearest Neighbor 0.212 0.083

Our Method 0.182 0.064

Table 6: The error in RT60 metric for the RIR.
For both, lower values imply better performance

baseline. The low error indicates the ability to pre-
dict an IR is reasonably effective and can lead
to perceptually sound IRs. We also evaluate this
task quantitatively by formulating a classification
task of predicting the RT60 metric. We discretize
the range of the RT60 into 10 classes, each with
roughly equal number of samples. The classifier
has a test accuracy of 61.5% which demonstrates
the network’s ability to estimate the RT60 range
from the visual frame quite well.

6 Conclusion

We presented a multi-task approach to learn
geometry-aware visual features for mono to bin-
aural audio conversion in videos. Our method
exploits the inherent room and object geome-
try and spatial information encoded in the visual
frames to generate rich binaural audio. We also
generated a large-scale video dataset with binau-
ral audio in photo-realistic environments to better
understand and learn the relation between visuals
and binaural audio. We also augment an in-the-
wild 360 video dataset with pseudo-binaural sound
and accompanying normal field-of-view video. Our
state-of-the-art results on three datasets demon-
strate the efficacy of our proposed formulation.

Despite encouraging results on these three
datasets, they have different pros and cons in
terms of scale, diversity, and realism as discussed
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Fig. 11: IR Prediction: The first column is the input frame to the encoder. The second column depicts
the ground truth IR for the frame and the fourth column is the corresponding spectrogram of this IR. The
third and fifth columns show the predicted IR waveform and spectrogram, respectively. This predicted
IR waveform is estimated from the spectrogram generated by our network.

in Sec. 4. It would be interesting future work to
either create a crowdsourcing interface for build-
ing a large-scale realistic dataset of users wearing
binaural microphones performing diverse every-
day activities, or a new pipeline that can more
intelligently integrate the strengths of these three
existing datasets for training models that can gen-
eralize to in-the-wild videos in novel domains.
Furthermore, we plan to explore how semantic
models of object categories’ sounds could benefit
the spatialization task. We also plan to study the
impact of explicitly performing object localisation
to improve scene understanding and incorporate
that in the binauralization task.
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